典例精析
题型一 求椭圆的标准方程
【例1】已知点P在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为和
,过P作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程.
【解析】由椭圆的定义知,2a=+=2,故a=,
由勾股定理得,()2-()2=4c2,所以c2=,b2=a2-c2=,
故所求方程为+=1或+=1.
【点拨】(1)在求椭圆的标准方程时,常用待定系数法,但是当焦点所在坐标轴不确定时,需要考虑两种情形,有时也可设椭圆的统一方程形式:mx2+ny2=1(m>0,n>0且m≠n);
(2)在求椭圆中的a、b、c时,经常用到椭圆的定义及解三角形的知识.
【变式训练1】已知椭圆C1的中心在原点、焦点在x轴上,抛物线C2的顶点在原点、焦点在x轴上.小明从曲线C1,C2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x,y).由于记录失误,使得其中恰有一个点既不在椭圆C1上,也不在抛物线C2上.小明的记录如下:
据此,可推断椭圆C1的方程为 .
【解析】方法一:先将题目中的点描出来,如图,A(-2,2),B(-,0),C(0,),D(2,-2),E(2,),F(3,-2).
通过观察可知道点F,O,D可能是抛物线上的点.而A,C,E是椭圆上的点,这时正好点B既不在椭圆上,也不在抛物线上.
显然半焦距b=,则不妨设椭圆的方程是+=1,则将点
A(-2,2)代入可得m=12,故该椭圆的方程是+=1.
方法二:欲求椭圆的解析式,我们应先求出抛物线的解析式,因为抛物线的解析式形式比椭圆简单一些.
不妨设有两点y=2px1,①y=2px2,②=,
则可知B(-,0),C(0,)不是抛物线上的点.
而D(2,-2),F(3,-2)正好符合.
又因为椭圆的交点在x轴上,故B(-,0),C(0,)不可能同时出现.故选用A(-2,2),E(2,)这两个点代入,可得椭圆的方程是+=1.
题型二 椭圆的几何性质的运用
【例2】已知F1、F2是椭圆的两个焦点,P为椭圆上一点,∠F1PF2=60°.