2019-2020学年苏教版选修2-1 定值问题 教案
2019-2020学年苏教版选修2-1       定值问题  教案第1页

圆锥曲线中的定值问题

一、基础知识:

所谓定值问题,是指虽然圆锥曲线中的某些要素(通常可通过变量进行体现)有所变化,但在变化过程中,某个量的值保持不变即为定值。

1、常见定值问题的处理方法:

(1)确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示

(2)将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数。

2、定值问题的处理技巧:

(1)对于较为复杂的问题,可先采用特殊位置(例如斜率不存在的直线等)求出定值,进而给后面一般情况的处理提供一个方向。

(2)在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢

(3)巧妙利用变量间的关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算

二、典型例题:

例1:已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线方程为,右焦点,双曲线的实轴为,为双曲线上一点(不同于),直线分别于直线交于两点

(1)求双曲线的方程

(2)试判断是否为定值,若为定值,求出该值;若不为定值,请说明理由

解:(1)由可得,且焦点在轴上

所以设双曲线方程为:,则渐近线方程为

由解得:

双曲线方程为

(2)由(1)可得:,设