学习目标 1.理解指数函数的概念,了解对底数的限制条件的合理性.2.掌握指数函数图像的性质.3.会应用指数函数的性质求复合函数的定义域、值域.
知识点一 指数函数
思考 细胞分裂时,第一次由1个分裂成2个,第2次由2个分裂成4个,第3次由4个分裂成8个,如此下去,如果第x次分裂得到y个细胞,那么细胞个数y与次数x的函数关系式是什么?这个函数式与y=x2有什么不同?
梳理 一般地,________________________叫作指数函数,其中x是自变量,函数的定义域是________.
特别提醒:(1)规定y=ax中a>0,且a≠1的理由:
①当a≤0时,ax可能无意义;②当a>0时,x可以取任何实数;③当a=1时,ax=1(x∈R),无研究价值.因此规定y=ax中a>0,且a≠1.
(2)要注意指数函数的解析式:①底数是大于0且不等于1的常数;②指数函数的自变量必须位于指数的位置上;③ax的系数必须为1;④指数函数等号右边不会是多项式,如y=2x+1不是指数函数.
知识点二 指数函数的图像和性质
思考 函数的性质包括哪些?如何探索指数函数的性质?