2019-2020学年人教A版选修2-1 曲线与方程 教案
2019-2020学年人教A版选修2-1      曲线与方程   教案第1页

  §2.5.1曲线与方程

●教学目标

1.了解平面直角坐标中"曲线的方程"和"方程的曲线"的含义.

2.会判定一个点是否在已知曲线上.

●教学重点 曲线和方程的概念

●教学难点 曲线和方程概念的理解

●教学过程

Ⅰ.复习回顾

  师:在本章开始时,我们研究过直线的各种方程,讨论了直线和二元一次方程的关系.下面我们进一步研究一般曲线和方程的关系.

  Ⅱ.讲授新课

1. 曲线与方程关系举例:

师:我们知道,两坐标轴所成的角位于第一、三象限的平分线的方程是x-y=0.这就是说,如果点M(x0,y0)是这条直线上的任意一点,它到两坐标轴的距离一定相等,即x0=y0,那么它的坐标(x0,y0)是方程x-y=0的解;反过来,如果(x0,y0)是方程x-y=0的解,即x0=y0,那么以这个解为坐标的点到两轴的距离相等,它一定在这条平分线上.(如左图)

  

  

  

  

  

  

  

  

  

  

  

  又如,以为圆心、为半径的圆的方程是。这就是说,如果是圆上的点,那么它到圆心的距离一定等于半径,即,也就是,这说明它的坐标是方程的解;反过来,如果是方程的解,即,也就是,即以这个解为坐标的点到点的距离为,它一定在以为圆心、为半径的圆上的点。(如右图).

2.曲线与方程概念

  一般地,在直角坐标系中,如果其曲线c上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:

  (1)曲线上的点的坐标都是这个方程的解;

(2)以这个方程的解为坐标的点都是曲线上的点,那么,这个方程叫做曲线的方程;