数学广角植树问题
【教材分析】:
本册《数学广角》主要渗透有关植树问题的一些思想方法。通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。
解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方阵,等等,它们中都隐藏着总数和间隔数之间的关系问题,我们就把这类问题统称为植树问题。在植树问题中"植树"的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。本节课着重研究直线上植树的一种情况(两端都种:棵数=间隔数+1)
【设计理念】:
《课标》提出:"学生通过学习,能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法。"新课标实施,数学教材进行了相应的改革,数学思想方法的重要性更为彰显。最明显的表现在于每册教材多了"数学广角"这一单元,通过"数学广角"来进一步渗透数学学习的思想、方法,加强学生综合运用知识的能力,逐步提高解决问题的能力。在植树问题的教学中,解题不是主要的教学目的,主要的任务是向学生渗透一种思想,一种在数学上、在研究问题上都很重要的思想--化归思想。
《课标》中关于第二学段目标有以下阐述:"应使学生经历从实际问题中抽象出数量关系,并运用所学知识解决问题的过程。""探求给定事物中隐含的规律或变化趋势。"
本课的设计,主要根据教学内容的特点,及学生的实际情况,引导学生积极参与,通过开放性的设计,让学生在设计植树方案的过程中通过画图亲身体验选择的间隔长不同,但棵数与间隔数之间都存在一定的关系。通过学生的体验,建构植树问题(两端都种)的模型,再运用模型解决生活中的类似问题。教学中重在让学生体验知识获得的过程,更注重于培养学生运用所学知识,举一反三,解决实际问题的能力。
【教学目标】:
1.通过猜测、验证等数学探究活动,学生初步体会两端都栽的植树问题的规律,建构数学模型,解决实际生活中的有关问题。
2.学生通过"化繁为简"从简单问题中探索规律,找出解决问题的有效方法,体会简单的模型思想和化归思想。
【教学重、难点】:
理解种树棵树与间隔数之间的关系,会应用植树问题的模型解决一些相关的实际问题。
【教学流程】:
一、创设情境,提出问题。
1、创设情境
同学们,大家好!我知道我们的操场刚好在整修,整修完后还要绿化100米的小路,现在有3种方案。(课件出示)
方案1 :两端要种,每隔5米栽一棵。一共需要多少棵树苗?