2019-2020学年苏教版选修2-1 圆锥曲线中的面积问题 教案
2019-2020学年苏教版选修2-1       圆锥曲线中的面积问题  教案第1页

圆锥曲线中的面积问题

一、基础知识:

1、面积问题的解决策略:

(1)求三角形的面积需要寻底找高,需要两条线段的长度,为了简化运算,通常优先选择能用坐标直接进行表示的底(或高)。

(2)面积的拆分:不规则的多边形的面积通常考虑拆分为多个三角形的面积和,对于三角形如果底和高不便于计算,则也可以考虑拆分成若干个易于计算的三角形

2、多个图形面积的关系的转化:关键词"求同存异",寻找这些图形的底和高中是否存在"同底"或"等高"的特点,从而可将面积的关系转化为线段的关系,使得计算得以简化

3、面积的最值问题:通常利用公式将面积转化为某个变量的函数,再求解函数的最值,在寻底找高的过程中,优先选择长度为定值的线段参与运算。这样可以使函数解析式较为简单,便于分析

4、椭圆与双曲线中焦点三角形面积公式(证明详见"圆锥曲线的性质")

(1)椭圆:设为椭圆上一点,且,则

(2)双曲线:设为椭圆上一点,且,则

二、典型例题:

例1:设为椭圆的左右焦点,过椭圆中心任作一直线与椭圆交于两点,当四边形的面积最大时,的值等于___________

思路:由椭圆中心对称的特性可知关于原点中心对称,所以与关于原点对称,面积相等。且四边形可拆成与的和,所以四边形的面积最大即面积最大,因为,所以当最大时,面积最大。即位于短轴顶点时,面积最大。由可知,