2019-2020学年人教A版选修2-2 1.3 导数的几何意义学案
2019-2020学年人教A版选修2-2  1.3 导数的几何意义学案第1页

1.1.3 导数的几何意义

[学习目标]

1.了解导函数的概念;了解导数与割线斜率之间的关系.

2.理解曲线的切线的概念;理解导数的几何意义.

3.会求曲线上某点处的切线方程,初步体会以直代曲的意义.

[知识链接]

 如果一个函数是路程关于时间的函数,那么函数在某点处的导数就是瞬时速度,这是函数的实际意义,那么从函数的图象上来考查函数在某点处的导数,它具有怎样的几何意义呢?

答 

设函数y=f(x)的图象如图所示,AB是过点A(x0,f(x0))与点B(x0+Δx,f(x0+Δx))的一条割线,此割线的斜率是=.当点

B沿曲线趋近于点A时,割线AB绕点A转动,它的极限位置为直线AD,这条直线AD叫做此曲线在点A处的切线.于是,当Δx→0时,割线AB的斜率无限趋近于过点A的切线AD的斜率k,即k=f′(x0)= .

[预习导引]

1.导数的几何意义

函数y=f(x)在点x=x0处的导数的几何意义是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率.也就是说,曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是f′(x0).相应地,切线方程为y-f(x0)=f′(x0)(x-x0).