1.2.1函数的概念(2)
一、教学目标设计
进一步理解函数的概念以及构成函数的三要素;了解函数值域的常见求法;会求一些简单的复合函数的值域。
三、教学重点及难点
函数值域的常见求法
四、教学过程设计
一、温故知新
1.复习和回顾函数的的定义
2.定义域的常见求法
二、学习新课
三要素中一个重要的元素是值域,每个函数根据定义域与对应法则会唯一的确定函数的值域,那么求值域有哪些方法呢?今天我就要带大家一起进入值域的世界。
问题:
(1)求的值域;
(2)求的值域;
(3)求的值域;
(4)求的值域
你会求其中的哪几个值域?分别是用什么方法呢?
[说明](1)用二次函数求值域的方法。是根号与二次函数组成的复合函数,先求二次函数的值域,再求根号。求复合函数值域的方法,是先求最小部分的值域,再一层层求更大的值域,每求一次,将所求得的值域作为新的定义域。
,所以
(2)用换元法,应用换元法特别要注意新自变量的取值范围一定要跟上;
设,则,所以
因为,所以
(3)用裂项法,针对于的函数特别有效;化成常数加上一个反比例函数的模式。
(4)用判别式法,对形如,的函数特别有效。此类问题在于去分母化成的形式后,要分和两种情况讨论,只有当时,才可利用求出y的取值范围。还应注意在求出y的取值范围后,要检验"="取到的可能性。
由已知得
若=0,则,代入上式,因为左边,不成立,所以
若,则因为,所以
即,所以,又因为,所以值域为
想一想这个题目能不能用其他方法(观察法)呢?