2019-2020学年北师大版选修2-3 二项分布 教案
2019-2020学年北师大版选修2-3    二项分布  教案第1页



2019-2020学年北师大版选修2-3 二项分布 教案

典例精析

题型一 相互独立事件同时发生的概率

【例1】甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为,甲、丙两台机床加工的零件都是一等品的概率为.

(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;

(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.

【解析】(1)设A、B、C分别为甲、乙、丙三台机床各自加工的零件是一等品的事件.

由题设条件有

由①③解得P(C)=,将P(C)=分别代入③②可得P(A)=,P(B)=,即甲、乙、丙三台机床各自加工的零件是一等品的概率分别是,,.

(2)记D为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件,

则P(D)=1-P()=1-[1-P(A)][1-P(B)][1-P(C)]=1-××=.

故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为.

【点拨】相互独立事件是发生的概率互不影响的两个或多个事件.两个相互独立事件同时发生的概率满足P(AB)=P(A)P(B),对于求与"至少"、"至多"有关事件的概率,通常转化为求其对立事件的概率.

【变式训练1】甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为.

(1)求乙至多击中目标2次的概率;

【解析】(1)乙至多击中目标2次的概率为1-C()3=.

(2)设甲恰比乙多击中目标2次为事件A,甲恰击中目标2次且乙恰击中目标0次为事件B1,甲恰击中目标3次且乙恰击中目标1次为事件B2,则A=B1+B2,B1、B2为互斥事件.

P(A)=P(B1)+P(B2)=×+×=.