解决问题的策略--假设
教学内容:教材第68-69页例1和"练一练",第72页第1-3题。
教学目标:
使学生经历解决问题的过程,体会通过假设把复杂的问题转化成简单问题的过程,初步感悟假设的策略,并能运用策略解决一些实际问题。
使学生在运用假设的策略解决实际问题的过程中,初步感受假设的策略对于解决问题的价值,进一步发展观察、比较、分析和推理等能力。
使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,增强学好数学的信心。
教学重点:理解相关实际问题的数量关系,初步学会运用假设的策略解决一些含有两个未知数的实际问题。
教学难点:通过假设把含有两个未知数的实际问题转化成含有一个未知数的问题。
教具准备:教学课件。
教学过程:
一、复习铺垫
请大家快速口答:小华把720毫升果汁倒入9个同样容量的小杯里,正好都倒满,每个小杯的容量是多少毫升?
小华把720毫升果汁倒入3个同样容量的大杯里,正好都倒满,每个大杯的容量是多少毫升?
看来这两题对大家来说都是小case呀,我们再看一道题(出示例1.)
指名读题,说说你收集到了哪些信息?
提问:和上面两道题相比,这道题复杂在哪里?(板书:两种未知量)
今天这节课,我们就通过解决实际问题,研究解决问题的策略(揭示课题:解决问题的策略)。
二、探索策略
1、教学例1。
(1)理解数量关系。
提问:你是怎样理解题中数量之间的关系的?同桌互相说一说。
交流:怎样理解题中数量之间的关系?
明确:根据"720毫升果汁倒入6个小杯和1个大杯,正好都倒满",可以知道6个小杯的容量+1个大杯的容量=720毫升
"小杯的容量是大杯的"就是大杯的容量是小杯的3倍,也就是1个大杯的容量=3个小杯的容量。
(2)确定思路。
你准备怎样解决这个问题?小组里讨论一下,每人都要发表自己的想法。
学生交流汇报,屏幕相机出示
(3)虽然大家想法很多,有直接思考的,有借助画图的,有列方程的,但思路都是一样的,都是假设把果汁倒入同一种杯子。板书:假设
(4)假设把720ml的果汁都倒入小杯,请选择一种方法写出解答过程并检验。
(5)学生列式解答并检验,教师巡视,选择不同解答方法的学生进行板演。
(6)集体评析板演的不同方法,弄清各种算法中每一步算出的是什么?
(7)讨论检验的方法。明确:检验时要看我们所求答案是否符合题目中所有的
条件:1、看6个小杯和1个大杯的果汁是不是一共720毫升;
2、小杯的容量是不是大杯的。