3.1.3 概率的基本性质
学习目标 1.了解互斥事件概率的加法公式.2.理解事件的关系与运算.3.会用对立事件的特征求概率.
知识点一 事件的关系与运算
思考 一粒骰子掷一次,记事件A={出现的点数大于4},事件B={出现的点数为5},则事件B发生时,事件A一定发生吗?
答案 因为5>4,故B发生时A一定发生.
梳理 1.对于事件A与事件B,如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B),记作B⊇A(或A⊆B).与集合类比,如图所示.
不可能事件记作∅,任何事件都包含不可能事件.如果事件A发生,则事件B一定发生,反之也成立,(若B⊇A,且A⊇B),那么称事件A与事件B相等,记作A=B.
2.关于事件的运算,有下表:
定义 表示法 事件的运算 并事件 若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件(或和事件) A∪B(或A+B) 交事件 若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件) A∩B(或AB)
知识点二 互斥与对立的概念
思考 一粒骰子掷一次,事件E={出现的点数为3},事件F={出现的点数大于3},事件G={出现的点数小于4},则E∩F是什么事件?E∪F呢?G∩F呢?G∪F呢?