第二节 函数的单调性与最值
2019考纲考题考情
1.增函数与减函数
一般地,设函数f(x)的定义域为I:
(1)如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数。
(2)如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数。
2.单调性与单调区间
如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的) 单调性,区间D叫做y=f(x)的单调区间。
3.函数的最大值与最小值
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:
(1)对于任意的x∈I,都有f(x)≤M;存在x0∈I,使得f(x0)=M,那么,我们称M是函数y=f(x)的最大值。
(2)对于任意的x∈I,都有f(x)≥M;存在x0∈I,使得f(x0)=M,那么,我们称M是函数y=f(x)的最小值。
4.函数单调性的两个等价结论