2019-2020学年北师大版选修1-1 导数及其应用 教案
1.函数的基本概念
(1)函数的定义
一般地,设A,B是两个非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)与之对应;那么就称:f:A→B为从集合A到集合B的一个函数.记作y=f(x),x∈A.
(2)函数的定义域、值域
在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合叫做函数的值域.
(3)函数的三要素是:定义域、值域和对应关系.
(4)表示函数的常用方法有:解析法、列表法和图象法.
(5)分段函数
若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.
分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.
2.函数定义域的求法
类型 x满足的条件 ,n∈N* f(x)≥0 与[f(x)]0 f(x)≠0 logaf(x) f(x)>0 四则运算组成的函数 各个函数定义域的交集 实际问题 使实际问题有意义
3.函数值域的求法