2019-2020学年苏教版选修1-1 圆锥曲线复习 学案
【考点自测】
1.(2017·全国Ⅲ)已知双曲线C:-=1(a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为( )
A.-=1 B.-=1
C.-=1 D.-=1
答案 B
解析 由y=x,可得=.①
由椭圆+=1的焦点为(3,0),(-3,0),
可得a2+b2=9.②
由①②可得a2=4,b2=5.
所以C的方程为-=1.故选B.
2.(2017·全国Ⅲ)已知椭圆C:+=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为( )
A. B. C. D.
答案 A
解析 由题意知,以A1A2为直径的圆的圆心为(0,0),半径为a.又直线bx-ay+2ab=0与圆相切,
∴圆心到直线的距离d==a,解得a=b,
∴=,
∴e=====.
故选A.
3.(2017·全国Ⅰ)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2