2010届高考数学考前复习:函数模型及其应用
2010届高考数学考前复习:函数模型及其应用第1页

第十节 函数模型及其应用

一、复习目标:

1.了解指数函数、对数函数以及幂函数的增长特征。知道直线上升、指数增长、对数增长等不同函数类型增长的含义。

2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。

3.能利用给定的函数模型解决简单的实际问题。

二、重难点:重点:掌握一次函数、二次函数、指数函数、对数函数等基本初等函数模型;培养阅读理解、建立数学模型和分析问题、解决问题的能力掌握解函数应用问题的基本步骤。

难点:建立数学模型和分析问题、解决问题的能力的培养。

三、教学方法:讲练结合,探析归纳。

四、教学过程

(一)、谈新课标要求及考纲要求和高考命题考查情况,促使学生积极参与。

  新课标要求及考纲要求:1.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义;

  2.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。

  高考命题考查情况及预测:函数应用问题是高考的热点,高考对应用题的考查即考小题又考大题,而且分值呈上升的趋势。高考中重视对环境保护及数学课外的的综合性应用题等的考查。出于"立意"和创设情景的需要,函数试题设置问题的角度和方式也不断创新,重视函数思想的考查,加大函数应用题、探索题、开放题和信息题的考查力度,从而使高考考题显得新颖、生动和灵活。

  预测2010年的高考,将再现其独特的考查作用,而函数类应用题,是考查的重点,因而要认真准备应用题型、探索型和综合题型,加大训练力度,重视关于函数的数学建模问题,学会用数学和方法寻求规律找出解题策略。

  (1)题型多以大题出现,以实际问题为背景,通过解决数学问题的过程,解释问题;

  (2)题目涉及的函数多以基本初等函数为载体,通过它们的性质(单调性、极值和最值等)来解释生活现象,主要涉计经济、环保、能源、健康等社会现象。

(二)、知识梳理整合,方法定位。(学生完成复资P25填空题,教师准对问题讲评)

1.我们学习过的基本初等函数主要有:一次函数、二次函数、正(反)比例函数、三角函数、指数函数、对数函数、幂函数等,我们要熟练掌握这些函数的图象与性质,以便利用它们来解决一些非基本函数的问题。

2.用基本初等函数解决非基本函数问题的途径:

(1)化整为零:即将非基本函数"拆"成基本初等函数,以便用已知知识解决问题;

(2)图象变换:某些非基本函数的图象可看成是由基本初等函数图象通过图象变换得到的,如果搞清了变换关系,便可借助基本初等函数解决非基本函数的问题。

3.函数的性质主要:周期性、有界性、单调性、奇偶性等,灵活运用这些性质,可以解决方程、不等式方面的不少问题。

4.在解决某些应用问题时,通常要用到一些函数模型,它们主要是:一次函数模型、

二次函数模型、指数函数模型、对数函数模型、幂函数模型、分式函数模型、分段函数模型等。

5.重难点问题探析:1.常见函数模型的理解:(1)直线模型,即一次函数模型,其增长特点是直线上升(的系数),通过图象可很直观地认识它。(2)指数函数模型:能用指