八年级数学上册《第十一章:三角形》教案教学设计免费下载16
八年级数学上册《第十一章:三角形》教案教学设计免费下载16第1页

 课题:§12.3.2.1 等边三角形(一)

教学目标

  (一)〔知识与技能

   经历探索等腰三角形成为等边三角形的条件及其推理证明过程.

(二)〔过程与方法〕

1.经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维.

2.经历观察、实验、猜想、证明的数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.

(三)〔情感、态度与价值观〕

1.积极参与数学学习活动,对数学有好奇心和求知欲.

2.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.

教学重点

等边三角形判定定理的发现与证明.

教学难点

1.等边三角形判定定理的发现与证明.

2.引导学生全面、周到地思考问题.

教学方法

探索发现法.

教具准备

三角板

教学过程

Ⅰ.提出问题,创设情境

[师]我们在前两节课研究证明了等腰三角形的性质和判定定理,我们知道,在等腰三角形中有一种特殊的等腰三角形──三条边都相等的三角形,叫等边三角形.回答下面的三个问题.

1.把等腰三角形的性质用到等边三角形,能得到什么结论?

2.一个三角形满足什么条件就是等边三角形?

3.你认为有一个角等于60°的等腰三角形是等边三角形吗?你能证明你的结论吗?把你的证明思路与同伴交流.

(教师应给学生自主探索、思考的时间)

[生甲]由等边对等角的性质可知,等边三角形的三个角相等,又由三角形三内角和定理可知,等边三角形的三个角相等,并且都等于60°.

[生乙]等腰三角形已有两边分别相等,所以我认为只要腰和底边相等,等腰三角形就是等边三角形了.

[生丙]等边三角形的三个内角都相等,且分别都等于60°,我认为等腰三角形的三个内角都等于60°,也就是说这个等腰三角形就是等边三角形了.

(此时,部分同学同意此生看法,部分同学不同意此生看法,引起激烈的争论,教师可让同学代表发表自己的看法)

[生丁]我不同意这个同学的看法,因为任何一个三角形满足这个条件都是等边三角形.根据等角对等边,三个内角都是60°,所以它们所对的边一定相等,但这一问题中"已知是等腰三角形,满足什么条件时便是等边三角形",我觉得他给的条件太多,浪费!

[师]给三个角都是60°,这个条件确实有点浪费,那么给什么条件不浪费呢?下面