第五节 抛物线
突破点一 抛物线的定义及其应用
抛物线的定义
平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.
一、判断题(对的打"√",错的打"×")
(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定是抛物线.( )
(2)AB为抛物线y2=4x的过焦点F的弦,若A(x1,y1),B(x2,y2),则x1x2=1,y1y2=-4,弦长|AB|=x1+x2+2.( )
答案:(1)× (2)√
二、填空题
1.已知动点P到定点(2,0)的距离和它到直线l:x=-2的距离相等,则点P的轨迹方程为________.
答案:y2=8x
2.已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=x0,则x0=________.
答案:1
3.已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为________.
答案:
考法一 抛物线的定义及应用
[例1] (1)(2019·赣州模拟)若点A的坐标为(3,2),F是抛物线y2=2x的焦点,点M在抛物线上移动时,使|MF|+|MA|取得最小值的M的坐标为( )
A.(0,0) B.
C.(1,) D.(2,2)
(2)(2019·襄阳测试)已知抛物线y=x2的焦点为F,准线为l,M在l上,线段MF与抛物线交于点N,若|MN|=|NF|,则|MF|=( )
A.2 B.3