2019-2020学年人教B版选修2-1 1.2.2 “非”(否定)教案
2019-2020学年人教B版选修2-1  1.2.2 “非”(否定)教案第1页

1.2.2 "非"(否定)

(一)教学目标

1.知识与技能目标:

(1)掌握逻辑联结词"非"的含义

(2)正确应用逻辑联结词"非"解决问题

(3)掌握真值表并会应用真值表解决问题

2.过程与方法目标:

观察和思考中,在解题和证明题中,本节课要特别注重学生思维能力中严密性品质的培养.

3.情感态度价值目标:

激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.

(二)教学重点与难点

重点:通过数学实例,了解逻辑联结词"非"的含义,使学生能正确地表述相关数学内容.

难点: 1、正确理解命题 "¬P"真假的规定和判定.

    2、简洁、准确地表述命题 "¬P".

(三)教学过程:

1、思考、分析

问题1:下列各组命题中的两个命题间有什么关系?

(1) ①35能被5整除; ②35不能被5整除;

(2) ①方程x2+x+1=0有实数根。 ②方程x2+x+1=0无实数根。

学生很容易看到,在每组命题中,命题②是命题①的否定。

2、归纳定义

  一般地,对一个命题p全盘否定,就得到一个新命题,记作

¬p

读作"非p"或"p的否定"。

3、命题"¬p"与命题p的真假间的关系

命题"¬p"与命题p的真假之间有什么联系?

引导学生分析前面所举例子中命题p与命题¬p的真假性,概括出这两个命题的真假之间的关系的一般规律。

例如:在上面的例子中,第(1)组命题中,命题①是真命题,而命题②是假命题。

第(2)组命题中,命题①是假命题,而命题②是真命题。

由此可以看出,既然命题¬P是命题P的否定,那么¬P与P不能同时为真命题,也不能同时为假命题,也就是说,

若p是真命题,则¬p必是假命题;若p是假命题,则¬p必是真命题;

p ¬P 真 假 假 真

4、命题的否定与否命题的区别

  让学生思考:命题的否定与原命题的否命题有什么区别?

命题的否定是否定命题的结论,而命题的否命题是对原命题的条件和结论同时进行否定,因此在解题时应分请命题的条件和结论。

例:如果命题p:5是15的约数,那么