3. 1.4 空间向量的正交分解及其坐标表示
教学目标
1.能用坐标表示空间向量,掌握空间向量的坐标运算。
2.会根据向量的坐标判断两个空间向量平行。
重、难点
1.空间向量的坐标表示及坐标运算法则。
2.坐标判断两个空间向量平行。
教学过程
1.情景创设:
平面向量可用坐标表示,空间向量能用空间直角坐标表示吗?
2.建构数学:
如图:在空间直角坐标系中,分别取与x轴、y轴、z轴方向相同的单位向量作为基向量,对于空间任一向量,由空间向量基本定理,存在唯一的有序实数组(x,y,z),使;有序实数组(x,y,z)叫做向量的空间直角坐标系中的坐标,记作=(x,y,z)。
在空间直角坐标系O-xyz中,对于空间任意一点A(x,y,z),向量是确定的,容易得到
。
因此,向量的坐标为(x,y,z)。
这就是说,当空间向量a的起点移至坐标原点时,其终点的坐标就是向量a的坐标。
类似于平面向量的坐标运算,我们可以得到空间向量坐标运算的法则。
设a=(),b=(),则
a+b=(),
a-b=(),
a=()。
空间向量平行的坐标表示为
a∥b(a≠0)。
例题分析:
例1:已知a=(1,-3,8),b=(3,10,-4),求a+b,a-b,3a。
例2:已知空间四点A(-2,3,1),B(2,-5,3),C(10,0,10)和D(8,4,9),求证:四边形ABCD是梯形。