2019-2020学年北师大版选修2-2 1.1.2 类比推理教案
2019-2020学年北师大版选修2-2   1.1.2 类比推理教案第1页

2019-2020学年北师大版选修2-2第二课时 合情推理--类比推理

一、教学目标

1、知识与技能:(1)结合已学过的数学实例,了解类比推理的含义;(2)能利用类比进行简单的推理;(3)体会并认识类比推理在数学发现和生活中的作用。

2、方法与过程:递进的了解、体会类比推理的思维过程;体验类比法在探究活动中:类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。

3、情感态度与价值观:体会类比法在数学发现中的基本作用:即通过类比,发现新问题、新结论;通过类比,发现解决问题的新方法。培养分析问题的能力、学会解决问题的方法;增强探索问题的信心、收获论证成功的喜悦;体验数学发现的乐趣、领略数学方法的魅力!同时培养学生学数学、用数学,完善数学的正确数学意识。

二、教学重点:了解类比推理的含义,能利用类比进行简单的推理。

  教学难点:培养学生"发现-猜想-证明"的推理能力。

三、教学方法:探析归纳,讲练结合

四、教学过程

  (一)、复习:归纳推理的概念:根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都具有这种属性。我们将这种推理方式称为归纳推理。

注意:利用归纳推理得出的结论不一定是正确的。

①归纳推理的要点:由部分到整体、由个别到一般;②典型例子方法归纳。

(二)、引入新课:据科学史上的记载,光波概念的提出者,荷兰物理学家、数学家赫尔斯坦•惠更斯曾将光和声这两类现象进行比较,发现它们具有一系列相同的性质:如直线传播、有反射和干扰等。又已知声是由一种周期运动所引起的、呈波动的状态,由此,惠更斯作出推理,光也可能有呈波动状态的属性,从而提出了光波这一科学概念。惠更斯在这里运用的推理就是类比推理。

(三)、例题探析

例1:已知:"正三角形内一点到三边的距离之和是一个定值",将空间与平面进行类比,空间中什么样的图形可以对应三角形?在对应图形中有与上述定理相应的结论吗?

解:将空间与平面类比,正三角形对应正四面体,三角形的边对应四面体的面。得到猜测:正四面体内一点到四个面距离之和是一个定值。

例2:根据平面几何的勾股定理,试类比地猜测出空间中相应的结论。

解:平面中的直角三角形类比到空间就是直四面体。如图,在四面体P-AB