明目标、知重点
1.了解导数在解决实际问题中的作用.
2.掌握利用导数解决简单的实际生活中的优化问题.
1.生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.
2.利用导数解决优化问题的实质是求函数最值.
3.解决优化问题的基本思路是:
→
←
上述解决优化问题的过程是一个典型的数学建模过程.
情境导学]
生活中经常遇到求利润最大、用料最省、效率最高等问题?这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具,本节我们运用导数,解决一些生活中的优化问题.
探究点一 面积、体积的最值问题
思考 如何利用导数解决生活中的优化问题?
答 (1)函数建模,细致分析实际问题中各个量之间的关系,正确设定所求最大值或最小值的变量y与自变量x,把实际问题转化为数学问题,即列出函数关系式y=f(x).
(2)确定定义域,一定要从问题的实际意义去考察,舍去没有实际意义的变量的范围.
(3)求最值,此处尽量使用导数法求出函数的最值.
(4)下结论,回扣题目,给出圆满的答案.
例1 学校或班级举行活动,通常需要张贴海报进行宣传.现让你设计一张如图所示的竖向张贴的海报,要求版心面积为128 dm2,上、下两边各空2 dm,左、右两边各空1 dm.如何设计海报的尺寸,才能使四周空白面积最小?