1.2.2 第1课时 函数的表示法
教学目标
1.了解函数的一些基本表示法(列表法、图象法、解析法),会根据不同实际情境选择合适的方法表示函数,树立应用数形结合的思想.[中国教育出版 ^ ]
2.通过具体实例,了解简单的分段函数,并能简单应用,提高应用函数解决实际问题的能力,增加学习数学的兴趣.
3.会用描点法画一些简单函数的图象,培养学生应用函数的图象解决问题的能力.
4.了解映射的概念及表示方法,会利用映射的概念来判断"对应关系"是否是映射,感受对应关系在刻画函数和映射概念中的作用,提高对数学高度抽象性和广泛应用性的进一步认识.[中国教 育 出版 ^]
重点难点
教学重点:函数的三种表示方法,分段函数和映射的概念.
教学难点:分段函数的表示及其图象,映射概念的理解.
教学过程
导入新课
思路1.当x>1时,f(x)=x+1;当x≤1时,f(x)=-x,请写出函数f(x)的解析式.这个函数的解析式有什么特点?教师指出本节课题.[w ww. s tep^ ]
思路2.化简函数y=|x|的解析式,说说此函数解析式的特点,教师指出本节课题.
推进新课
新知探究
①函数h(x)=与f(x)=x-1,g(x)=x2在解析式上有什么区别?[来 ^ 源 :中教 ]
②请举出几个分段函数的例子.
活动:学生讨论交流函数解析式的区别.所谓"分段函数",习惯上指在定义域的不同部分,有不同对应法则的函数.[ww ^w. ste p.c om]
讨论结果:①函数h(x)是分段函数,在定义域的不同部分,其解析式不同.说明:分段函数是一个函数,不要把它误认为是几个函数;分段函数的定义域是各段定义域的并集,值域是各段值域的并集;生活中有很多可以用分段函数描述的实际问题,如出租车的计费、个人