§2.1 圆锥曲线
学习目标 1.掌握圆锥曲线的类型及其定义、几何图形和标准方程,会求简单圆锥曲线的方程.2.通过对圆锥曲线性质的研究,感受数形结合的基本思想和理解代数方法研究几何性质的优越性.
知识点一 椭圆的定义
思考 如果动点P到两定点A,B的距离之和为PA+PB=2a(a>0且a为常数),点P的轨迹一定是椭圆吗?
答案 不一定.
当2a>AB时,P点的轨迹是椭圆;
当2a=AB时,P点的轨迹是线段AB;
当2a 梳理 平面内与两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆.两个定点F1,F2称为椭圆的焦点,两焦点之间的距离称为椭圆的焦距. 知识点二 双曲线的定义 思考1 取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F1,F2上,把笔尖放在点M处,拉开闭拢拉链,笔尖经过的点可画出一条曲线,思考曲线满足什么条件? 答案 如图,曲线上的点满足条件:MF1-MF2=常数.如果改变一下位置,使MF2-MF1=常数.可得到另一条曲线. 思考2 在双曲线的定义中强调平面内动点到两定点的距离差的绝对值为常数,若没有绝