2018-2019学年北师大版必修五 4.3 简单线性规划的应用 学案
2018-2019学年北师大版必修五   4.3 简单线性规划的应用        学案第1页

4.3 简单线性规划的应用

[学习目标] 1.加深对二元一次不等式组及其几何意义的了解.2.能熟练地用平面区域表示二元一次不等式组.3.准确利用线性规划知识求解目标函数的最值.4.会求一些简单的非线性函数的最值.

知识点一 图解法解线性规划问题的步骤

用图解法解线性规划问题的步骤:(1)确定线性约束条件;(2)确定线性目标函数;(3)画出可行域;(4)利用线性目标函数(直线)求出最优解.

知识点二 简单线性规划问题的实际应用

1.线性规划的实际问题的类型

(1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大;

(2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.

常见问题有:

①物资调动问题

例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小?

②产品安排问题

例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大?

③下料问题

例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?

2.解答线性规划实际应用题的步骤

(1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法.

(2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.

(3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案.