2.1数列的概念与简单表示法
教学目标
知识与技能:理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的个通项公式。
过程与方法:通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.
情感态度与价值观:通过本节课的学习,体会数学 于生活,提高数学学习的兴趣。
教学重点
数列及其有关概念,通项公式及其应用
教学难点 学+ + ]
根据一些数列的前几项抽象、归纳数列的通项公式
教学过程
Ⅰ.课题导入
三角形数:1,3,6,10,...
正方形数:1,4,9,16,25,...
Ⅱ.讲授新课
1. 数列的定义:按一定次序排列的一列数叫做数列.
注意:
⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;
⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.
2. 数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,...,第n 项,....
例如,上述例子均是数列,其中①中,"4"是这个数列的第1项(或首项),"9"是这个数列中的第6项.
3.数列的一般形式:,或简记为,其中是数列的第n项
结合上述例子,帮助学生理解数列及项的定义. ②中,这是一个数列,它的首项是"1",""是这个数列的第"3"项,等等
下面我们再来看这些数列的每一项与这一项的序号是否有一定的对应关系?这一关系可否用一个