§1.1.2 导数的概念
教学目标:
1.了解瞬时速度、瞬时变化率的概念;
2.理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;
3.会求函数在某点的导数。
教学重点:瞬时速度、瞬时变化率的概念、导数的概念;
教学难点:导数的概念.
教学过程设计
(一)、情景引入,激发兴趣。
【教师引入】 :"生活中有一些现象值得我们去研究,比如,子弹离开枪管那一瞬间的速度,奥运会上百米赛跑运动员冲向终点那一时刻的速度。科学上对瞬时速度的研究也是非常有必要的,比如在天宫一号与神州八号的成功对接,最关键的就是它们每个瞬间的速度都相等。
(二)、探究新知,揭示概念
探究:计算运动员在这段时间里的平均速度,并思考以下问题:
⑴运动员在这段时间内使静止的吗?
⑵你认为用平均速度描述运动员的运动状态有什么问题吗?
探究过程:如图是函数h(t)= -4.9t2+6.5t+10的图像,结合图形可知,,
所以,
虽然运动员在这段时间里的平均速度为,显然,运动员在这段时间里不是静止的.由此可见,用平均速度描述运动员的运动状态是有一定的局限性.所以我们说"平均速度"只能粗略地描述运动员的运动状态.还有一种速度,它能更精确地刻画运动员在每个时刻的运动状态,我们称之为:瞬时速度.
那如何求运动员的瞬时速度呢?比如,高台跳水运动员在时的瞬时速度是多少呢?大家有没有好的想法?
(三)、分析归纳,抽象概括
1.瞬时速度
我们把物体在某一时刻的速度称为瞬时速度。运动员的平均速度不能反映他在某一时刻的瞬时速度,那么,如何求运动员的瞬时速度呢?比如,时的瞬时速度是多少?考察附近的情况: