2017-2018学年人教B版选修4-5 2.2 排序不等式 学案
2017-2018学年人教B版选修4-5  2.2  排序不等式  学案第1页

  三排序不等式

  

  

                对应学生用书P35

  1.顺序和、乱序和、反序和

  设a1≤a2≤...≤an,b1≤b2≤...≤bn为两组实数,c1,c2,...,cn为b1,b2,...,bn的任一排列,称a1b1+a2b2+...+anbn为这两个实数组的顺序积之和(简称顺序和),称a1bn+a2bn-1+...+anb1为这两个实数组的反序积之和(简称反序和).称a1c1+a2c2+...+ancn为这两个实数组的乱序积之和(简称乱序和).

  2.排序不等式(排序原理)

  定理:(排序原理,又称为排序不等式) 设a1≤a2≤...≤an,b1≤b2≤...≤bn为两组实数,c1,c2,...,cn为b1,b2,...,bn的任一排列,则有a1bn+a2bn-1+...+anb1≤a1c1+a2c2+...+ancn≤a1b1+a2b2+...+anbn,等号成立(反序和等于顺序和)⇔a1=a2=...=an或b1=b2=...=bn.

  排序原理可简记作:反序和≤乱序和≤顺序和.

  [说明] 排序不等式也可以理解为两实数序列同向单调时,所得两两乘积之和最大;反向单调(一增一减)时,所得两两乘积之和最小.

  

  

                对应学生用书P35

用排序不等式证明不等式所证不等式中字母大小顺序已确定         

  [例1] 已知a,b,c为正数,且a≥b≥c,求证:

  ++≥++.

[思路点拨] 分析题目中已明确a≥b≥c,所以解答本题时可直接构造两个数组,再