二、教学重点:掌握数学归纳法的原理及证明问题的方法。
难点:能用数学归纳法证明一些简单的数学命题。
三、教学过程:
【创设情境】
1.华罗庚的"摸球实验"。
2."多米诺骨牌实验"。
问题:如何保证所摸的球都是红球?多米诺骨牌全部倒下?处了利用完全归纳法全部枚举之外,是否还有其它方法?
数学归纳法:数学归纳法实际上是一种以数学归纳法原理为依据的演绎推理,它将一个无穷的归纳过程转化为一个有限步骤的演绎过程,是处理自然数问题的有力工具。
(1)(递推奠基):当n取第一个值n0结论正确;
(2)(递推归纳):假设当n=k(k∈N*,且k≥n0)时结论正确;(归纳假设)
证明当n=k+1时结论也正确。(归纳证明)
由(1),(2)可知,命题对于从n0 的所有正整数n都正确。
【例题评析】
例1:以知数列{an}的公差为d,求证: