2017-2018学年苏教版必修3 3.4 互斥事件 学案
2017-2018学年苏教版必修3 3.4 互斥事件  学案第1页

  

  

  

  

  2016年春节前夕,南京市某超市进行有奖促销活动,有一等奖与二等奖奖项,其中中一等奖的概率为0.1,中二等奖的概率是0.25,假设每位顾客只有一次机会.

  问题1:假设顾客甲获奖,说明什么?

  提示:说明顾客甲中一等奖或二等奖.

  问题2:通过上述问题"中一等奖"与"中二等奖"能否同时发生?

  提示:不能同时发生.

  问题3:在上述问题中"中奖"与"不中奖"这两个事件必有一个发生吗?

  提示:必有一个发生.

  

  1.互斥事件

  (1)定义:不能同时发生的两个事件称为互斥事件.

  (2)如果事件A1,A2,...,An中的任何两个都是互斥事件,就说事件A1,A2,...,An彼此互斥.

  (3)规定:设A,B为互斥事件,若事件A、B至少有一个发生,我们把这个事件记作A+B.

  2.互斥事件的概率加法公式

  (1)如果事件A,B互斥,那么事件A+B发生的概率等于事件A,B分别发生的概率的和,即P(A+B)=P(A)+P(B).

  (2)如果事件A1,A2,...,An两两互斥,则P(A1+A2+...+An)=P(A1)+P(A2)+...+P(An).

  3.对立事件

(1)定义:两个互斥事件必有一个发生,则称这两个事件为对立事件,事件A的对立事件记为A.