第二章 数列
2.2 等差数列
2.2 等差数列(第2课时)
学习目标
在理解等差数列定义、如何判定等差数列及学习等差数列通项公式的基础上,掌握等差中项的定义及应用,明确等差数列的性质,并运用其进行一些等差数列的相关计算.
合作学习
一、设计问题,创设情境
在上一节我们已经学习了等差数列,掌握了等差数列的定义、通项公式与公差,作为一类特殊的数列,是否具有某些特殊的性质?又如何去证明或判定一个数列是等差数列呢?
二、信息交流,揭示规律
1.对于三个数成等差数列,我们定义等差中项
在如下的两个数之间,插入一个什么数后这三个数就会成为一个等差数列.
(1)2,( ),4;
(2)-12,( ),0;
(3)a,( ),b.
2.等差中项定义
由三个数a,A,b组成的等差数列可以看成最简单的等差数列.这时A叫做a与b的等差中项.
符号表示:2A=a+b⇒A= .
【思考】(1)在等差数列{an}中,是否有2an+1=an+an+2成立?等差数列又可以怎么叙述?
从第2项起,每一项是它的前一项和后一项的等差中项.
(2)等差中项可应用于判断一个数列是否为等差数列.
3.等差数列的性质
问题1:列举几个数列,观察数列的特点,研究公差与数列单调性的关系.
性质1:若数列{an}是等差数列,公差为d.若d>0,则{an}是递增数列;若d<0,则{an}是递减数列;若d=0,则{an}是常数列.
问题2:探究等差数列{an}中任意两项an,am之间的关系.它们之间的关系可表示为 .
由此也可得到等差数列通项公式的另一种表示:an=am+(n-m)d