2019-2020学年人教A版选修1-1 1.1.2四种命题1.1.3四种命题的相互关系 教案
2019-2020学年人教A版选修1-1     1.1.2四种命题1.1.3四种命题的相互关系  教案第1页

 和四种命题间的相互关系,会用等价命题判断四种命题的真假.

◆过程与方法:多让学生举命题的例子,并写出四种命题,培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力;培养学生抽象概括能力和思维能力.

◆情感、态度与价值观:通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及培养他们的分析问题和解决问题的能力.

(二)教学重点与难点

重点:(1)会写四种命题并会判断命题的真假;(2)四种命题之间的相互关系.

难点:(1)命题的否定与否命题的区别; (2)写出原命题的逆命题、否命题和逆否命题;

(3)分析四种命题之间相互的关系并判断命题的真假.

教具准备:与教材内容相关的资料。

教学设想:通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及培养他们的分析问题和解决问题的能力.

(三)教学过程

学生探究过程:

1.复习引入

初中已学过命题与逆命题的知识,请同学回顾:什么叫做命题的逆命题?

2.思考、分析

问题1:下列四个命题中,命题(1)与命题(2)、(3)、(4)的条件与结论之间分别有什么关系?

(1)若f(x)是正弦函数,则f(x)是周期函数. (2)若f(x)是周期函数,则f(x)是正弦函数.

(3)若f(x)不是正弦函数,则f(x)不是周期函数.(4)若f(x)不是周期函数,则f(x)不是正弦函数.

3.归纳总结

  问题一通过学生分析、讨论可以得到正确结论.紧接结合此例给出四个命题的概念,(1)和(2)这样的两个命题叫做互逆命题,(1)和(3)这样的两个命题叫做互否命题,(1)和(4)这样的两个命题叫做互为逆否命题。

4.抽象概括

  定义1:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆命题.

  让学生举一些互逆命题的例子。

  定义2:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,那么我们把这样的两个命题叫做互否命题.其中一个命题叫做原命题,另一个命题叫做原命题的否命题.

  让学生举一些互否命题的例子。

  定义3:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么我们把这样的两个命题叫做互为逆否命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆否命题.

  让学生举一些互为逆否命题的例子。

小结:

(1) 交换原命题的条件和结论,所得的命题就是它的逆命题:

(2) 同时否定原命题的条件和结论,所得的命题就是它的否命题;

交换原命题的条件和结论,并且同时否定,所得的命题就是它的逆否命题.