第2课时 导数与函数的极值、最值
题型一 用导数求解函数极值问题
命题点1 根据函数图象判断极值
例1 设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是________.(填序号)
①函数f(x)有极大值f(2)和极小值f(1);
②函数f(x)有极大值f(-2)和极小值f(1);
③函数f(x)有极大值f(2)和极小值f(-2);
④函数f(x)有极大值f(-2)和极小值f(2).
答案 ④
解析 由题图可知,当x<-2时,f′(x)>0;
当-2 当1 当x>2时,f′(x)>0. 由此可以得到函数f(x)在x=-2处取得极大值, 在x=2处取得极小值. 命题点2 求已知函数的极值 例2 设函数f(x)=ln(x+1)+a(x2-x),其中a∈R.讨论函数f(x)极值点的个数,并说明理由. 解 f′(x)=+a(2x-1) = (x>-1). 令g(x)=2ax2+ax-a+1,x∈(-1,+∞).