第三章 概 率
3.2 古典概型
3.2.1 古典概型
学习目标
1.通过模拟试验理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性;观察类比各个试验,正确理解古典概型的两大特点;树立从具体到抽象、从特殊到一般的辩证唯物主义观点,培养用随机的观点来理性地理解世界.
2.通过观察、类比,提高发现问题、分析问题、解决问题的能力,归纳总结出古典概型的概率计算公式,注意公式P(A)=A"包含的基本事件的个数" /"基本事件的总数" 的使用条件,体会化归的重要思想.掌握列举法,学会运用分类讨论的思想解决概率的计算问题.
合作学习
一、设计问题,创设情境
(1)掷一枚质地均匀的硬币,结果只有2个,即"正面朝上"或"反面朝上",它们都是随机事件.
(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,...,10,从中任取一球,只有10种不同的结果,即标号为1,2,3,...,10.
思考讨论:根据上述情况,你能发现它们有什么共同特点?
二、信息交流,揭示规律
1.提出问题:
试验一:抛掷一枚质地均匀的硬币,分别记录"正面朝上"和"反面朝上"的次数,要求每个小组至少完成20次(最好是整十数),最后由学科代表汇总;
试验二:抛掷一枚质地均匀的骰子,分别记录"1点""2点""3点""4点""5点"和"6点"的次数,要求每个小组至少完成60次(最好是整十数),最后由学科代表汇总.
(1)用模拟试验的方法来求某一随机事件的概率好不好?为什么?
(2)根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?
(3)什么是基本事件?它具有什么特点?
2.基本事件具有两个特点: