实验小学教学案
课题 用字母表示运算定律和计算公式 课时 1课时 主备教师
审核 温丽
王玉清 教学
目标 知识与技能:使学生在旧知识的基础上,进一步认识用字母 表示运算定律和计算公式。理解一个数的平方的 含义。
过程与方法:使学生能够用语言表达运算定律和字母公式, 能够将数字代入字母公式中进行计算,培养学生的抽 象概括能力。
情感、态度与价值观:向学生渗透字母表示运算定律和公式的简单美。 重点
难点 教学重点:能用字母表示运算定律和公式,并能根据字母公式求值。
教学难点:理解一个数的平方的含义。 教(学)具准备 多媒体 学情
分析 这部分内容是在学生用含有字母的式子表示加减法和乘除法数量关系,并且学习了字母与数相乘的简便写法以及代入求值的完整书写过程后的一个新的内容。本节内容主要学习用字母表示数和计算公式,同时学习字母相乘的简便写法和代入公式求值的书写格式,重点体会数学符号语言的简便性。 教
学
过
程
一、创设情境,明确目标:
1.引导学生回忆:我们已经学过哪些运算定律?并让学生分别用语言叙述一下对应的运算定律的具体内容。
2.通过学生的回答,教师进行整理:学过的运算定律有:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律。
3.根据学生的回答出示如下表格:
加法交换律
两个数相加,交换加数的位置,它们的和不变。
加法结合律
三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变。
乘法交换律
两个数相乘,交换因数的位置,它们的积不变。
乘法结合律
三个数相乘,先把前两个数相乘,再同第三个数相乘;或者先把后两个数相乘,再同第一个数相乘,它们的积不变。
乘法分配律
两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
4.师引导思考:在叙述时有什么感受?
(比较麻烦,有时表达不清楚。)
结合学过的知识想一想怎样能变简单些?
学生会想到用字母表示数。
5.揭题:那么今天我们就来继续研究用字母表示数的相关知识。
二、自主学习,合作探究:
教学用字母表示运算定律。
1.你能像上节课那样,用字母把这些运算定律表示出来吗?(出示运算定律表格)
为了教学统一,可以规定学生用字母a、b、c来表示数字。
先自主思考,再尝试表示。将答案写在教材第54页的表上。集体订正。
出示根据学生的回答完成的表格:
加法交换律
a+b=b+a
加法结合律
(a+b)+c=a+(b+c)
乘法交换律
ab=ba
乘法结合律
(a×b)×c=a×(b×c)
乘法分配律
(a+b)×c=a×c+b×c
2.引导学生自主学习乘号的简写。
先让学生自己看教材学习,再进行交流汇报。
明确:在含有字母的式子里,字母中间的乘号可以记作"· ",也可以省略不写。如a×b=b×a,可以写成a·b=b·a或ab=ba。
3.引导观察比较:用文字叙述和用字母表示运算定律有什么不同?
先让学生自己说一说,再启发学生小结:用字母表示运算定律,一目了然,简明易记,也便于应用。
质疑:这里的a、b、c可以表示哪些数?
通过交流,引导学生明白:这三个字母可以分别表示我们学过的任何数。
三、展示交流,反馈诊断
1.出示正方形的形状,问:这是什么?(正方形)
让学生先说一说正方形的面积及周长的计算公式:面积=长×边长;周长=长×4。
引导:正方形的面积和周长也可以用字母表示,一般情况下,用S表示面积,用c表示周长,a表示边长。试着写一写用字母表示正方形的周长和面积计算公式。
让学生自己尝试写出用字母表示的公式,然后再翻书看课本是怎样表示的。
S= a2 C=4a
2.提问:你有什么疑问?(学生可能对平方的表示不理解)
明确:S=a·a可以写成a2,表示2个a相乘,读作"a的平方",所以正方形的面积公式一般写成S= a2。
出示:32,b2,52,指名让学生读一读,并说出各表示什么意思。
(32读作3的平方,表示2个3相乘,等于9;b2读作b平方,表示2个b乘;52读作5的平方,表示2个5相乘,等于25。)
出示:边长6厘米的正方形,你能计算出这个正方形的面积和周长吗?
引导学生先说出用字母表示的计算公式,再计算:正方形面积的公式是S=a2,当a=6时,S=62=6×6=36(平方厘米)。
正方形周长的公式是C=4a,当a=6时,C=4×6=24(厘米)。
四、讲解点拨,总结提升
1.完成教材第56页"练习十二"第4题。
先让学生分析信息,说一说"今天卖出多少个足球"怎么表示?(48+m)
再让学生独立计算第(2)、(3)小题,集体订正。
2.完成教材第56页"练习十二"第6题。
此题有两个容易迷惑学生的地方:a2、62及6×2、a×2。教师一定要引导学生正确区分"平方"与"2倍":a2表示2个a相乘,即a×a;2a表示2个a相加,即a+a。
五、达标检测,巩固拓展
师:这节课你学会了什么知识?有哪些收获?
引导归纳:
1.用字母表示运算定律,简明易记、便于应用。
2.在含有字母的式子里,字母中间的乘号可以记作"· ",也可以省略不写。
3.a2读作:a的平方,表示2个n相乘。 自主修改