1.1 任意角的概念与弧度制
1.1.1 角的概念的推广
学习目标:1.了解角的概念的推广,能正确区分正角、负角和零角.(一般)2.理解象限角的概念.(重点)3.掌握终边相同的角的表示方法,并能判断角所在的位置.(难点)
[自 主 预 习·探 新 知]
1.角的概念
(1)角的形成:角可以看成是一条射线绕着它的端点从一个位置旋转到另一个位置所成的图形.
(2)角的分类:
按旋转方向可将角分为如下三类:
①正角:按照逆时针方向旋转而成的角;
②负角:按照顺时针方向旋转而成的角;
③零角:当射线没有旋转时,我们也把它看成一个角,叫做零角.
2.角的加减法运算
(1)射线OA绕端点O旋转到OB位置所成的角,记作∠AOB,其中OA叫做∠AOB的始边,OB叫做∠AOB的终边.
(2)引入正角、负角的概念以后,角的减法运算可以转化为角的加法运算,即α-β可以化为α+(-β).这就是说,各角和的旋转量等于各角旋转量的和.
3.终边相同的角
所有与角α终边相同的角,连同角α在内,可构成一个集合S=,即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.
4.象限角
角的顶点与坐标原点重合,角的始边与x轴的正半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是第几象限的角.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.