2018-2019学年人教B版 选修2-3 2.2.2事件的相互独立性 教案
2018-2019学年人教B版   选修2-3   2.2.2事件的相互独立性  教案第1页

2.2.2事件的相互独立性

教学目标:

知识与技能:理解两个事件相互独立的概念。

过程与方法:能进行一些与事件独立有关的概率的计算。

情感、态度与价值观:通过对实例的分析,会进行简单的应用。

教学重点:独立事件同时发生的概率

教学难点:有关独立事件发生的概率计算

授课类型:新授课

课时安排:2课时

教 具:多媒体、实物投影仪

教学过程:

一、复习引入:

1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;

 必然事件:在一定条件下必然发生的事件;

 不可能事件:在一定条件下不可能发生的事件

2.随机事件的概率:一般地,在大量重复进行同一试验时,事件发生的频率总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件的概率,记作.

3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;

4.概率的性质:必然事件的概率为,不可能事件的概率为,随机事件的概率为,必然事件和不可能事件看作随机事件的两个极端情形

5基本事件:一次试验连同其中可能出现的每一个结果(事件)称为一个基本事件

6.等可能性事件:如果一次试验中可能出现的结果有个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是,这种事件叫等可能性事件

7.等可能性事件的概率:如果一次试验中可能出现的结果有个,而且所有结果都是等可能的,如果事件包含个结果,那么事件的概率

8.等可能性事件的概率公式及一般求解方法

9.事件的和的意义:对于事件A和事件B是可以进行加法运算的

10 互斥事件:不可能同时发生的两个事件.

一般地:如果事件中的任何两个都是互斥的,那么就说事件彼此互斥