【考试要求】
1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理;
2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.
【知识梳理】
1.直线与平面平行
(1)直线与平面平行的定义
直线l与平面α没有公共点,则称直线l与平面α平行.
(2)判定定理与性质定理
文字语言 图形表示 符号表示 判定定理 平面外一条直线与此平面内的一条直线平行,则该直线平行于此平面 a⊄α,b⊂α,
a∥b⇒a∥α 性质定理 一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行 a∥α,a⊂β,
α∩β=b⇒a∥b 2.平面与平面平行
(1)平面与平面平行的定义
没有公共点的两个平面叫做平行平面.
(2)判定定理与性质定理
文字语言 图形表示 符号表示 判定定理 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行 a⊂α,b⊂α,a∩b=P,
a∥β,b∥β⇒α∥β 性质定理 两个平面平行,则其中一个平面内的直线平行于另一个平面 α∥β,a⊂α⇒a∥β 如果两个平行平面同时和第三个平面相交,那么它们的交线平行 α∥β,α∩γ=a,
β∩γ=b⇒a∥b 【微点提醒】
平行关系中的三个重要结论
(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.
(2)平行于同一平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.
(3)两个平面平行,则其中任意一个平面内的直线与另一个平面平行.
【疑误辨析】
1.判断下列结论正误(在括号内打"√"或"×")
(1)若一条直线和平面内一条直线平行,那么这条直线和这个平面平行.( )
(2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条.( )
(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( )
(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( )
【答案】 (1)× (2)× (3)× (4)√