高中物理 平抛运动的临界问题剖析
一、考点突破:
考点 课程目标 备注 平抛运动的临界问题求解方法 1. 掌握平抛运动的规律及推论;
2. 会根据极限法确定临界轨迹 高考重点,题型多为选择题、计算题,考查重点是化曲为直的物理思想,本知识点既可单独命题也可和圆周运动结合命题
二、重难点提示:
重点:利用平抛运动的规律解决临界问题。
难点:利用极限法确定临界轨迹。
一、平抛运动的临界问题,解决这类问题有三点:
1. 明确平抛运动的基本性质公式;
基本规律及公式:
①速度:,,
合速度 ,方向:tanθ=;
②位移:x=t ,y=,合位移大小:s=,方向:tanα=
③时间:由y=得t=(由下落的高度y决定);
④竖直方向自由落体运动,匀变速直线运动的一切规律在竖直方向上都成立。
2. 确定临界状态;
用极限分析法把初速度增大或减小,根据平抛轨迹寻找临界状态。
3. 确定临界轨迹--在轨迹示意图中寻找出几何关系。
解题过程中画出运动轨迹示意图,可以使抽象的物理情境变得直观,也可以使隐藏于问题深处的条件显露无遗,然后根据几何关系列出水平和竖直方向的运动规律解题。
二、平抛临界模型
1. 球类的临界模型:乒乓球触网、出界问题;排球、网球中的临界问题。
2. 斜面上的临界问题:在斜面上平抛离斜面最远距离问题。
3. 斜抛中的临界问题:斜抛的最小速度、最大高度、最远射程等问题。
注: