2019-2020学年人教A版选修1-1 3.3.2函数的极值与导数 教案
2019-2020学年人教A版选修1-1     3.3.2函数的极值与导数     教案第1页

 §3.3.2函数的极值与导数

一、教学目标

知识与技能:理解极大值、极小值的概念; 能够运用判别极大值、极小值的方法来求函数的极值; 掌握求可导函数的极值的步骤;

过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;

情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

二、教学重点难点

教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤.

教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤.

三、教学过程:

函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.我们以导数为工具,对研究函数的增减及极值和最值带来很大方便.

四、学情分析

我们的学生属于平行分班,学生已有的知识和实验水平有差距。需要教师指导并借助动画给予直观的认识。

五、教学方法

发现式、启发式

新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习

六、课前准备

1.学生的学习准备:

2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。

七、课时安排:1课时

八、教学过程

(一)预习检查、总结疑惑

检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。

提问

(二)情景导入、展示目标。

设计意图:步步导入,吸引学生的注意力,明确学习目标。

1、有关概念

(1).极大值: 一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点

(2).极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0).就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点

(3).极大值与极小值统称为极值

在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值请注意以下几点:

(ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是大或小;并不意味着它在函数的整个的定义域内最大或最小。

(ⅱ)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个

(ⅲ)极大值与极小值之间

无确定的大小关系。即一个函数的极大值未必大于极小值,如上图所示,是极大值点