2019-2020学年北师大版选修2-2 简单的逻辑联结词全称量词与存在量词 教案
1.简单的逻辑联结词
(1)命题中的且、或、非叫做逻辑联结词。
(2)命题p∧q、p∨q、綈p的真假判定
p q p∧q p∨q 綈p 真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假 假 假 假 真 2.量词及含有一个量词的命题的否定
(1)全称量词和存在量词
①全称量词有:所有的,任意一个,任给一个,用符号"∀"表示;存在量词有:存在一个,至少有一个,有些,用符号"∃"表示。
②含有全称量词的命题,叫做全称命题。"对M中任意一个x,有p(x)成立"用符号简记为:∀x∈M,p(x)。
③含有存在量词的命题,叫做特称命题。"存在M中元素x0,使p(x0)成立"用符号简记为:∃x0∈M,p(x0)。
(2)含有一个量词的命题的否定
命题 命题的否定 ∀x∈M,p(x) ∃x0∈M,綈p(x0) ∃x0∈M,p(x0) ∀x∈M,綈p(x)
1.用"并集"的概念来理解"或",用"交集"的概念来理解"且",用"补集"的概念来理解"非"。
2.记忆口诀:(1)"p或q",有真则真;(2)"p且q",有假则假;(3)"非p",真假相反。
3.命题p∧q的否定是(綈p)∨(綈q);命题p∨q的否定是(綈p)∧(綈q)。