第三章 三角恒等变换
3.2 简单的三角恒等变换
(第二课时)
学习目标
进一步掌握三角恒等变换的方法,如何利用正弦、余弦、正切的和差公式与二倍角公式对三角函数式进行化简、求值和证明.
合作学习
一、复习回顾,承上启下
1.两角和与差公式
cos(α-β)=
cos(α+β)=
sin(α-β)=
sin(α+β)=
tan(α+β)=
tan(α-β)=
2.二倍角公式
sin 2α=
cos 2α=
=
=
tan 2α=
3.两角和与差公式、二倍角公式的逆用
(1)降幂公式
2cos 2α=
2sin 2α=
(2)辅助角公式
asin x+bcos x=
注:
二、典例分析,性质应用
【例1】如图,已知OPQ是半径为1,圆心角为π/3的扇形,C是扇形弧上的动点,ABCD是扇形的内接矩形.记∠COP=α,求当角α取何值时,矩形ABCD的面积最大?并求出这个最大面积.