2018-2019学年人教A版选修2-2 1.5定积分的概念1 学案
2018-2019学年人教A版选修2-2               1.5定积分的概念1    学案第1页

第一章导数及其应用1.5定积分的概念1

------------ 学 案

一、学习目标

 1.了解"以直代曲"、"以不变代变"的思想方法.

 2.会求曲边梯形的面积和汽车行驶的路程.

二、自主学习

1.如果函数y=f(x)在某个区间I上的图象是一条 的曲线,那么就把它称为区间I上的连续函数.

2.由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的图形称为 ,如图①.

3.把区间[a,b]分成许多小区间,进而把曲边梯形拆分为一些 .对每个 "以直代曲",即用 的面积近似代替 的面积,得到每个小曲边梯形面积的 ,对这些近似值 ,就得到曲边梯形面积的 如图②.

4.如果物体做变速直线运动,速度函数v=v(t),那么也可以采用 , , , 的方法,求出它在a≤t≤b内所作的位移s.

          1. "以直代曲"的思想求曲边梯形的面积

  由于没有曲边梯形的面积公式,为计算曲边梯形的面积,可以将它分割成许多个小曲边梯形,每个小曲边梯形用相应的小矩形近似代替,对这些近似值求和,就得到曲边梯形面积的近似值.当分割无限变细时,这个近似值就无限趋近于所求曲边梯形的面积. "分割"的目的在于 "以直代曲",即以"矩形"代替"曲边梯形",随着分割的等份数增多,这种"代替"就越精确.当n越大,所有小矩形的面积和就越趋近于曲边梯形的面积.

2.用定积分的定义求定积分的技巧

  (1)熟记解题的四个步骤:分割、近似代替、求和、取极限;

  (2) 在"近似代替"中,每个小区间上函数f(x)的值一般都取左端点的函数值代替或都取右端点的函数值代替。事实上,也可以取区间上的任意点代替,没有统一的要求.为了运算方便,通常取一些特殊点.

(3)熟记以下结论:①1+2+3+...+n=,②12+22+32+...+n2=,