2019-2020学年苏教版选修1-1 双曲线 学案
2019-2020学年苏教版选修1-1   双曲线  学案第1页

2019-2020学年苏教版选修1-1 双曲线 学案

1.双曲线定义

平面内到两定点F1,F2的距离之差的绝对值等于常数(大于零且小于|F1F2|)的点的集合叫作双曲线.这两个定点F1,F2叫作双曲线的焦点,两焦点之间的距离叫作双曲线的焦距.

集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.

(1)当2a<|F1F2|时,P点的轨迹是双曲线;

(2)当2a=|F1F2|时,P点的轨迹是两条射线;

(3)当2a>|F1F2|时,P点不存在.

2.双曲线的标准方程和简单性质

标准方程 -=1(a>0,b>0) -=1(a>0,b>0) 图形 性质 范围 x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a 对称性 对称轴:坐标轴 对称中心:原点 顶点坐标 A1(-a,0),A2(a,0) A1(0,-a),A2(0,a) 渐近线 y=±x y=±x 离心率 e=,e∈(1,+∞),其中c= 实虚轴 线段A1A2叫作双曲线的实轴,它的长|A1A2|=2a,线段B1B2叫作双曲线的虚轴,它的长|B1B2|=2b;a叫作双曲线的实半轴长,b叫作双曲线的虚半轴长 a,b,c的关系 c2=a2+b2 (c>a>0,c>b>0)

知识拓展

巧设双曲线方程

(1)与双曲线-=1(a>0,b>0)有共同渐近线的方程可表示为-=t(t≠0).

(2)过已知两个点的双曲线方程可设为+=1(mn<0).

题组一 思考辨析