2019-2020学年人教A版选修2-1  椭 圆 学案
2019-2020学年人教A版选修2-1     椭 圆    学案第1页



典例精析

题型一 求椭圆的标准方程

【例1】已知点P在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为和

,过P作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程.

【解析】由椭圆的定义知,2a=+=2,故a=,

由勾股定理得,()2-()2=4c2,所以c2=,b2=a2-c2=,

故所求方程为+=1或+=1.

【点拨】(1)在求椭圆的标准方程时,常用待定系数法,但是当焦点所在坐标轴不确定时,需要考虑两种情形,有时也可设椭圆的统一方程形式:mx2+ny2=1(m>0,n>0且m≠n);

(2)在求椭圆中的a、b、c时,经常用到椭圆的定义及解三角形的知识.

【变式训练1】已知椭圆C1的中心在原点、焦点在x轴上,抛物线C2的顶点在原点、焦点在x轴上.小明从曲线C1,C2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x,y).由于记录失误,使得其中恰有一个点既不在椭圆C1上,也不在抛物线C2上.小明的记录如下:

据此,可推断椭圆C1的方程为     .

【解析】方法一:先将题目中的点描出来,如图,A(-2,2),B(-,0),C(0,),D(2,-2),E(2,),F(3,-2).

通过观察可知道点F,O,D可能是抛物线上的点.而A,C,E是椭圆上的点,这时正好点B既不在椭圆上,也不在抛物线上.

显然半焦距b=,则不妨设椭圆的方程是+=1,则将点

A(-2,2)代入可得m=12,故该椭圆的方程是+=1.

方法二:欲求椭圆的解析式,我们应先求出抛物线的解析式,因为抛物线的解析式形式比椭圆简单一些.

不妨设有两点y=2px1,①y=2px2,②=,

则可知B(-,0),C(0,)不是抛物线上的点.

而D(2,-2),F(3,-2)正好符合.

又因为椭圆的交点在x轴上,故B(-,0),C(0,)不可能同时出现.故选用A(-2,2),E(2,)这两个点代入,可得椭圆的方程是+=1.

题型二 椭圆的几何性质的运用

【例2】已知F1、F2是椭圆的两个焦点,P为椭圆上一点,∠F1PF2=60°.