第二节不等式的证明
知识点一 不等式证明的常见方法
1.综合法:从命题的已知条件出发,利用公理、已知的定义及定理,逐步推导,从而最后导出要证明的命题.
2.分析法:从需要证明的结论出发,分析使这个命题成立的充分条件,利用已知的一些定理,逐步探索,最后达到命题所给出的条件(或者一个已证明过的定理或一个明显的事实).
3.反证法:首先假设要证明的命题是不正确的,然后利用公理,已有的定义、定理,逐步分析,得到和命题的条件(或已证明过的定理,或明显成立的事实)矛盾的结论,以此说明假设的结论不成立,从而原来的结论正确.
4.放缩法:将所需证明的不等式的值适当放大(或缩小),使它由繁到简,达到证明目的.如果所要证明的不等式中含有分式,把分母放大,则相应分式的值缩小,反之,把分母缩小,则分式的值放大.
1.要证明+>2,可选择的方法有以下几种,其中最合理