第二节 参 数 方 程
2019考纲考题考情
1.参数方程的概念
一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数:①并且对于t的每一个允许值,由方程组①所确定的点M(x,y)都在这条曲线上,那么方程组①就叫做这条曲线的参数方程,t叫做参变数,简称参数。相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。
2.直线的参数方程
过定点P0(x0,y0)且倾斜角为α的直线的参数方程为(t为参数),则参数t的几何意义是有向线段\s\up10(→(→)的数量。
3.圆的参数方程
圆心为(a,b),半径为r,以圆心为顶点且与x轴同向的射线,按逆时针方向旋转到圆上一点所在半径形成的角α为参数