空间直角坐标系
学习目标 1.了解空间直角坐标系的建系方式;2.掌握空间中任意一点的表示方法;3.能在空间直角坐标系中求出点的坐标.
知识点 空间直角坐标系
思考1 在数轴上,一个实数就能确定一个点的位置.在平面直角坐标系中,需要一对有序实数才能确定一个点的位置.为了确定空间中任意一点的位置,需要几个实数?
答案 三个.
思考2 空间直角坐标系需要几个坐标轴,它们之间什么关系?
答案 空间直角坐标系需要三个坐标轴,它们之间两两相互垂直.
1.空间直角坐标系及相关概念
(1)空间直角坐标系:从空间某一定点引三条两两垂直,
且有相同单位长度的数轴:x轴、y轴、z轴,这样就建立了一个空间直角坐标系Oxyz.
(2)相关概念:点O叫做坐标原点,x轴、y轴、z轴叫做坐标轴,通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面、yOz平面、zOx平面.
2.右手直角坐标系
在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系.
3.空间一点的坐标
空间一点M的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点M在此空间直角坐标系中的坐标,记作M(x,y,z),其中x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标.
类型一 求空间点的坐标
例1 (1)如图,在长方体ABCD-A1B1C1D1中,|AD|=|BC|=3,|AB|=5,|AA1|=4,建立适当的直角坐标系,写出此长方体各顶点的坐标.