2019-2020学年人教B版必修二 直线与圆位置关系 教案
2019-2020学年人教B版必修二     直线与圆位置关系     教案第1页

直线与圆位置关系

一、基础知识:

1、定义:在平面上到定点的距离等于定长的点的轨迹是圆

2、圆的标准方程:设圆心的坐标,半径为,则圆的标准方程为:

3、圆的一般方程:圆方程为

(1)的系数相同

(2)方程中无项

(3)对于的取值要求:

4、直线与圆位置关系的判定:相切,相交,相离,位置关系的判定有两种方式:

(1)几何性质:通过判断圆心到直线距离与半径的大小得到直线与圆位置关系,设圆的半径为,圆心到直线的距离为,则:

① 当时,直线与圆相交

② 当时,直线与圆相切

③ 当时,直线与圆相离

(2)代数性质:可通过判断直线与圆的交点个数得到直线与圆位置关系,即联立直线与圆的方程,再判断解的个数。设直线:,圆:,则:

消去可得关于的一元二次方程,考虑其判别式的符号

① ,方程组有两组解,所以直线与圆相交

② ,方程组有一组解,所以直线与圆相切

③ ,方程组无解,所以直线与圆相离

5、直线与圆相交:

弦长计算公式:

6、直线与圆相切:

(1)如何求得切线方程:主要依据两条性质:一是切点与圆心的连线与切线垂直;二是圆