三反证法与放缩法
1.反证法
(1)反证法证明的定义:先假设要证明的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不成立,从而证明原命题成立.
(2)反证法证明不等式的一般步骤:
①假设命题不成立;
②依据假设推理论证;
③推出矛盾以说明假设不成立,从而断定原命题成立.
2.放缩法
(1)放缩法证明的定义:
证明不等式时,通常把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的.
(2)放缩法的理论依据有:
①不等式的传递性;
②等量加不等量为不等量;
③同分子(分母)异分母(分子)的两个分式大小的比较.
利用反证法证明问题 [例1] 已知f(x)=x2+px+q.
求证:(1)f(1)+f(3)-2f(2)=2;
(2)|f(1)|,f|(2)|,|f(3)|中至少有一个不小于.
[思路点拨] "至少有一个"的反面是"一个也没有".
[证明] (1)f(1)+f(3)-2f(2)
=(1+p+q)+(9+3p+q)-2(4+2p+q)=2.
(2)假设|f(1)|,|f(2)|,|f(3)|都小于,
则|f(1)|+2|f(2)|+|f(3)|<2.
而|f(1)|+2|f(2)|+|f(3)|≥f(1)+f(3)-2f(2)=2矛盾,