1.1.2 集合间的基本关系 教学目的:1、使学生掌握子集、真子集、空集、两个集合相等等概念,会写出一个 集合的所有子集。 2、能过与不等式类比学习集合间的基本关系,掌握类比思想的应用。 教学重难点:重点是掌握集合间的关系,难点是子集与真子集的区别。 教学过程: 一、复习提问 1、元素与集合之间有什么关系?a与{a}有什么区别? 2、集合的表示方法有几种?分别是什么? 二、新课 5<7 例1、A={1,2,3},B={1,2,3,4,5} 或7>5 特点:A有的元素,B都有,即集合A的任何一个元素都是集合B的元素。 称为:集合A是集合B的子集。 记作:AB,或BA。 例2、A为高一(2)班女生的全体组成的集合,B为这个班学生的全体组成的集合。 特点:A有的元素,B都有,即集合A的任何一个元素都是集合B的元素。 称为:集合A是集合B的子集。 记作:AB,或BA。 定义:一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元 素,我们就说这两个集合有包含关系,称集合A是集合B的子集(subset)。 记作:AB,或BA。用Venn图表示(右上图)。
5=5 例3、设C={x|x是两条边相等的三角形},D={x|x是等腰三角形}